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Using the transfer matrix method, we give the exact solution of a deterministic sandpile model
for arbitrary N, where IV is the size of a single toppling. The one- and two-point functions are given
in term of the eigenvalues of an N x N transfer matrix. All the n-point functions can be found in
the same way. Application of this method to a more general class of models is discussed. We also
present a quantitative description of the limit cycle (attractor) as a multifractal.

PACS number(s): 05.40.4j, 05.70.Jk, 05.70.Ln

I. INTRODUCTION

The sandpile model has been conceived as the sim-
plest model which can illlustrate self-organized critical-
ity (SOC). It has developed into an interesting cellular
automata model of nonlinear dynamics in its own right.
Bak, Tang, and Wiensenfeld [1,2] were the first to use
numerical methods to study some of the sandpile mod-
els and observed that the models automatically evolve
into a self-organized critical state while they possess 1/ f
spectra in both spatial and temporal distributions of cer-
tain physical quantities. It was conjectured that SOC
may be a universal characteristic underlying nonlinear,
dispersive systems in nature such as earthquakes, forest
fire, turbulence, etc.

The simplest cellular automata model of the sandpile
is to assign a height number h; to each site on a one-
dimensional lattice with length L. There are two basic
operations of the model—dropping and toppling. Drop-
ping means that one sand grain is added at some site of
the lattice, i.e., D;: h; = h; + 1. Toppling occurs when
a slope (defined as the difference in height between ad-
jacent sites) exceeds some critical value N. If toppling
occurs at one site, some sand grains at the site will be
moved to other sites which may trigger further topplings.

Even with these simple rules of evolution, the analytic
solution of the sandpile model is typically very difficult to
come by especially when L or N becomes large, or when
the lattice dimension is more than 1. Most researchers
handle the models by numerical simulation [3-5]. If the
rules are such that the evolution of the system is inde-
pendent of the order of the droppings, then the model
is called Abelian. For a large class of Abelian mod-
els some exact results have been obtained by Dhar and
Ramaswamy [6]. The non-Abelian models are typically
much harder to solve. Here we shall investigate a class
of non-Abelian models in the deterministic limit, i.e., the
sand being dropped at a fixed site [7].

We consider the one-dimensional case and label the
sites from left to right as 1 to L. The sand is dropped
only at the site 1. If the slope at a site exceeds a given
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number N, then the sand will topple to the right. Let
the slope o; = h; — h;41; then the toppling rule is “if
0; >N, theno; 1 50,1+ N,0; 5> 0;,—(N+1),and
0i+N — 0i+N + 1.7 The rule should be modified when
toppling occurs near the boundary. The condition at the
left boundary is trivial. When sand grains reach beyond
the right boundary they drop out from the system, i.e.,
we keep h; = 0 for ¢ > L. A state in which all o; < N is
called a stable state. Toppling stops when a stable state
is reached. Each dropping and subsequent toppling pro-
cess will result in the transition from one stable state to
another. Since there are only a finite number of different
states in the system, after dropping enough sand at site
1, the system will step into a cycle called the limit cycle.
For the system that we consider here there is only one
limit cycle in the problem. Not all the stable states are
in the limit cycle. Those in the limit cycle are called al-
lowed states. In the following, all the states we will refer
to are allowed states. The number of allowed states in
the limit cycle is NZ [8].

Some special solvable non-Abelian models have been
investigated in Refs. [8-10]. In Ref. [8], the simplest
(N = 2) of a class of non-Abelian sandpile models was
solved. Some general properties of the model for arbi-
trary N were also exposed including some results about
the random drop cases [9]. In Ref. [10] a new method
using the transfer matrix idea from statistical mechanics
models was developed and applied to solve the N = 3
case of the same class of sandpile models. It was com-
mented that the method should also be useful for solving
models with arbitrary N. In this note, we wish to develop
this idea further and supply a solution of the model with
arbitrary V.

The method to be introduced here is particularly use-
ful for those models in which the structure of the limit
cycles has been worked out. Once the cycle structure is
known, its information can be succinctly summarized in
a matrix which we call the transfer matrix by analogy
with the similar matrix in statistical mechanics. For the
deterministic model defined above, the structure of the
limit cycle has been worked out in Ref. [8]. Therefore we
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should use it as our main example; the method may be
applicable to much wider classes of models. A multifrac-
tal description of the limit cycle is also worked out.

II. THE DEFINITION
OF THE TRANSFER MATRIX

The allowed states of length L in the limit cycle are
characterized by three conditions.

(1)o; >0for0<i< L.

(2) There exists at least one site ¢ for any consecutive
N sites such that o; = NV (stability condition).

(3) There exists a site ¢ satisfying L — oy, < i < L such
that o; = N (boundary condition).

If [0102...0L] is an allowed state in the limit cycle with
length L, then [0;410;42...0L] is also an allowed state in
the limit cycle with length L — .

A. Reduced basis

To make the method of the tranfer matrix more pow-
erful, it is useful to define a reduced basis ||n);, which
classifies the allowed states according to the constraint
on their preceding sites (to their left). The set of allowed
states of length ! can be classified according to a quan-
tum number n, 1 < n < N. A state [ni17m2...m1], which
is an allowed state in the limit cycle with length [, is
said to have the quantum number n if nx;_, = N and
7 < Nfori < N+1—n when N+ 1—n <[, while
m=Il4+n—1landn, < Nfori<lwhen N4+1—-n>1
[11]. A collection of such states can be denoted as ||n),
and called a reduced state, while |n); denotes a typical
state in ||n);. Every allowed state belongs to one of the
reduced states. We therefore call the set of ||n);, with
1 < n < N, areduced basis. The quantum number n
labels the fact that, for any state [ny72...m;] in ||n);, one
of the n slopes to the left of 7; has to be N.

For an allowed state of length L [0103...0L], the last
l slopes [0p_1410L—142...01] are an allowed state of
length I, which belongs to some reduced basis ||n);, and
[0102...00_107_;,,(= n)] is an allowed state of length
L — 1+ 1. This correspondence is one to one for fixed [
and this provides a route to construct the limit cycle of
length L from the limit cycle of length I (< L).

m
Smntr = (N + 1™V 43 (—1)3(N + 1) IN=IH NN

i=1

with m > 0 and 0 < I < N. However, such a tedious
closed form is difficult to use. A better form can be
obtained by the transfer matrix method.

C. Transfer matrix

For any state in |n);, we can add a preceding slope
o = N, resulting in a state in |N);41, or add a pre-
ceding slope 0 = 0,1,2,...,N — 1 if n > 1, resulting
in a state in |[n — 1);4;. We can express this property

[((m—j?N+l> +(N+1)((m—.j)N+l)]
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B. The time average of space dependent functions

Let S; be the number of allowed states of length I + 1
with 0;41 = N. From the three conditions for allowed
states in the limit cycle, we have S; = (N+1)! for 0 < I <
N, Sy = (N+1)N—NN, and S;y; = (N-}-I)SI—NNSI_N
for I > N. For any allowed state of length L with o; = N,
[0i+10i42...0L] can be any allowed state of length L — .
The number of allowed states of length L with ¢; = N is
thus NL—%S;_;.

It should be noted that the three conditions for al-
lowed states in the limit cycle only differentiate o; = N
and o; # N unless ¢ = L. Since we know the total degen-
eracy of states for o; taking an arbitrary value and the
degeneracy for states in which o; = N can be calculated
using Sj, the degeneracy for o; # N can be easily ob-
tained. Therefore S; contains all the information about
the time average of space dependent functions, such as
the n-point function (o;...0;). Here (...) means the av-
erage in time over a limit cycle. The one-point function
can be evaluated in terms of the summation of all allowed
states in a limit cycle, i.e.,

NNL_iSi#l + Nz—l(NL . NL—isi_l)

(o3)= o
=N2-1+N;L1s]ir_i1’ i<n e
Similarly, the two-point function is
e : 1)2 Si_l;i-_i_l, oL
(2.2)

Actually, all the n-point functions can be expressed in a
similar form. Therefore the calculations of the n-point
functions are reduced to the calculation of S;. It should
be noted that these time averages of space dependent
functions are independent of L.

One can use mathematical induction to get the follow-
ing closed form for S;:

(2.3)

J 7—1

in terms of a transfer operator T such that T||n); =
HN>1+1 + NHn - 1>1+1, ifn > 1, and T”l)[ = ”N>[+1.
For example, the first equation represents the fact that,
given a typical state [172...7;] in ||n); the corresponding
allowed state [n,717m2...m;] contains one state in ||N);4;
and N states in |[n — 1);41. As far as the transfer ma-
trix is concerned, all the allowed states within the same
reduced state are identical and there is no need to dis-
tinguish them. Therefore they are counted as one in the
calculation of the transfer matrix, which makes it eas-
ier to calculate S;. The degeneracy associated with the
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number of identical states in a reduced state can be eas-
ily included in the calculation of partition functions as
shown in Egs, (2.1) and (2.2). It is also clear from the
definition of the transfer matrix that its properties are
independent of the subscript . Since it is obvious that
each operation of T increases the [ by 1, the subscript
can be ignored completely.

Representing ||[N) by col(1 0 ... 0), ||[N — 1) by
col(0 1 0 ... 0), ..., ||1) by col(0 ... 0 1), the transfer
operator can thus be represented as an N x N matrix:

1 1 1 ... 1 1
N 0 0 ... 0 O
0O N 0 ... 0 O
T=|. . . .. | (2.4)
0o 0 o0 ... 0 O
0 0 0 ... N O

Note that col(1 1 ... 1) is an eigenvector of T of
eigenvalue N. The allowed states of length 1 are
o1 = 1,2,..., N, which correspond to the reduced ba-
sis ||1)1, [|2)1, .., ||IN)1, respectively. The number
of allowed states of length L is easily proved to be
(1 1 .. 1T %%ol(1 1 ..1) = NL. This is the
simplest way of deriving this result, pointed out al-
ready in Ref. [8]. The number of states correspond-
ing to the reduced basis |n); with 1 < n < N is
(0N SN—1,n - 01,2)T'"Tcol(1 1 ... 1) = N'71, which
is independent of n, and
Si=(11..1)T'ol(10 ... 0). (2.5)
S; can now be expressed in terms of the eigenvalues of
the transfer matrix 7', and we have

NH—I N-1 X
S = 2 A1)
! N+1( +mz::1 m

where N)Xog(Ao = 1), Ny, ..., NAn_; are the eigenvalues
of T and Ay, A2, ..., Ay_1 are the solutions of the equation

(2.6)

1+2X+3X2 4.+ NIV = 0. (2.7)
The one- and two-point functions are thus
N-1
N+1 1 i .
(o) =—5——5 mZ::l,\m, i<L (2.8)
and
N-1 N-1
(N+1)2 N+1 N -1
= Al bY
T ] N-1 ) N-1 .
D IE RS ISP SE
2 4
m=1 m=1 k=1

For N = 2 and 3, the results agree with [8,10].
With y = 1/X and multiplying Eq. (2.7) by y — 1, we
have

WHyV 4 4y=N=2y>1= |\ <1, (2.10)

where the redundant solution y = 1 is excluded. Multi-
plying by y — 1 again, we have

YNt = (N+1)y—N= (N+1)|y|+ N> |y~
(2.11)

which implies |y| < 2 for N > 2 and therefore |y| <
(3N +42)Y/(N+1) The solutions of y are inside the annulus
1 < |y € Ymae = (3N + 2)Y/V+D_ In fact for large N
one can show that ymaez = 1+ N~11n(2N) and therefore
as N — oo all the roots have |y| near 1. From Eq. (2.11)
we have

N+1 _ __N
W™ = VD= )
which means the solutions with smaller |y| are all near
y = 1 for large N.

To explore the asymptotic behavior of S;, we are inter-
ested in the solutions of Eq. (2.7) with larger |A]. There-
fore we would like to find the solutions of Eq. (2.11) with
smaller |y| excluding the redundant solution y = 1. Con-
sidering only one of the complex conjugate solutions in
the upper half of the complex plane, let y; = ajeiai with
0<j<N/2and ¢; = L[(N+1)y; —N] with0 < ¢; <7
such that (N + 1)0; = ¢; + 2jm. It should be noted that
(N 4+ 1)8p = ¢ results in the redundant solution yo = 1.
From Eq. (2.11) we have

a?-"”z =(N+ 1)2(1? + N? —2N(N + 1)a; cos6;

and

(N + l)a,j sin 9]'
(N +1)ajcos6; — N’

tang; =

For large N we only have to consider the case of j/N <« 1
to find the smaller |y| solutions. Letting a; = 1+x; /(N +
1) and 0; = (2j7+¢;)/(N+1) < 1, we have (as N — o0)

€2 — (14 ;)% = (¢; + 2jm)? (2.12)
and
o 2T+ P;
tan¢] = Jm;-l, (2.13)

where the trigonometric functions have been expanded to
the second order. Table I shows the values of the first few
z’s and ¢’s as N — oco. From Eq. (2.9), the correlation
length is found to be N/z; for large N.

TABLE I. Some numerical values of x; and ¢; as N — oo.

J z; 2]

1 2.089 1.178
2 2.664 1.312
3 3.026 1.374
4 3.292 1.410
5 3.501 1.435
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III. MULTIFRACTAL CHARACTERIZATION
OF THE LIMIT CYCLE

Now we would like to describe the limit cycle (attrac-
tor) quantitatively. In general, the state in the limit cy-
cle corresponds to a path in a tree. It is now possible to
identify a multifractal along the time axis. Rescaling the
time variable so that each time step is of length § = N~L,
the duration for a limit cycle fits into the time interval
[0,1]. Consider the states [0102...0L] in the limit cycle
which contains Ng 0’s, N; 1’s, ..., and Ny N’s. The
corresponding time steps for such states form a fractal in
the interval [0, 1] with fractal dimension f(o,&1,..-,€N)
where £ = N;/L, for 0 < i < N and satisfy >, & = 1.
The above relations are exact as L — co.

For N = 2, it is straightforward to get

f(€07 617 62) = ﬁ {60 In (6_2_:'_%})___50)
62 _61 _EO
reum (222 =0)

&2
+&1n (52—61—&))]' (3.1)

This function depends on &, and £; in the same way,
which suggests that the boundary effect due to the spe-
cific constraint on oy, is negligible in the large L limit.
Neglecting this boundary effect, there is no more differ-
ence betweenn = 0, 1, ..., and N—1. Thus it is natural to
define the fractal dimension as a function of £ = Ny /L
with 1/N < £ < 1. The problem is equivalent to count-
ing the ways to distribute (1 — £)L objects into £L slots
and every slot admits at most N — 1 objects. Now we
have

(VE)T© = 1 dE-NN g\
T (L-Np)!del-Ny \ -1 o
x NE-N~ (3.2)
The “=” is “=" as L — oo. After taking the differenti-

ation with z separately on [(zV — 1)/(z — 1)]N~~! and
14+z4+224+-..+ a2V, we have
N-1
NF+Q=8f" _ Z NFkQ—F)+kEf!
k=0
where f(§ + A€) is approximated as f(£) + AEf’. Let

f(€) =g(&)/InN+1—¢ with R=e9 and Z = e~ (9-¢9"),
which means

(3.3)

R’ z'

Now Egq. (3.3) becomes

R=Z+4+2%4...+ 2V, (3.5)

It follows from the definitions of R and Z that

g€)=€Em(Z+ 2%+ +2ZY)—InZ (3.6)

with
¢ = 1+Z+2%+---+2N1

T 1+42Z+3Z24 .-+ NZN-1°
This result obviously satisfies the boundary conditions
f€=1/N)=1—1/Nand f(§=1)=0. f(§{) =1 and
f'(€) = 0 happen at £ = 2/(N + 1), which is consistent
with (o;) = (N +1)/2 as © = oo from Eq. (2.8). Equa-
tions (3.6) and (3.7) express the fractal dimension f(¢)
in terms of the variable Z, 0 < Z < oo.

(3.7)

IV. DISCUSSIONS

We have introduced the concept of the transfer matrix
into the study of steady properties of sandpile models.
This is closely related to the Hamiltonian formulation
of the usual statistical mechanics. Indeed, one may re-
gard the formulas for the correlation function such as
Egs. (2.1) and (2.2) as “path integral” expressions in a
discrete formulation. The transfer matrix plays the role
of the evolution operator.

The usefulness of the transfer matrix formulation was
illustrated by deriving the one- and two-point correlation
functions for a deterministic sandpile model with an ar-
bitrary critical slope N. We found that the two-point
function decreases exponentially as the separation of the
two points increases with a correlation length depend-
ing on N. In units of the lattice spacing, the correlation
length is found to be the largest (in magnitude) root of
an (N — 1)th order polynomial. The correlation length
is proportional to N in the large IV limit.

In the L — oo limit, the states in the limit cycle can
be characterized as a multifractal. We derive an explicit
expression for the multifractal dimension for arbitrary
N. It was pointed out in Ref. [8] that the multifrac-
tal structure reflects the spatial-temporal organization of
the model and is expected to be found in any determin-
istic model of self-organized criticality. This multifractal
structure indicates that, even though there exists only
short range spatial correlation for any N, power law be-
havior is expected for the time-time correlation function.
It would be interesting to investigate the relation between
this correlation function and the multifractal nature of
the attactor.
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